Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Journal of Biological Chemistry ; 299(3 Supplement):S641, 2023.
Article in English | EMBASE | ID: covidwho-2319165

ABSTRACT

The N protein of the SARS-CoV-2 virion is critical for viral genome packaging via RNA binding and regulation of viral transcription at the replication-transcription complex (RTC). The N protein can be divided into five main domains, and the central region is the linker, which is predicted to be primarily disordered and has not been heavily studied. The linker is Serine-Arginine Rich, which is phosphorylated at multiple sites by host kinases during infection, thereby promoting the N protein's role in viral transcription. Phosphorylation is a critical process for the regulation of many cellular processes and can provide recognition sites for binding complexes. In a study that examined the recognition of the SARS-CoV-2 N protein by the human 14-3-3 protein, the linker was found to contain critical phosphosites for 14-3-3 binding. The goals of this project are to determine the structure, dynamics, and RNA interactions of the Serine-Arginine Rich linker region. To accomplish this, we performed Nuclear Magnetic Resonance spectroscopy (NMR) experiments to analyze the structure of the linker region of the N protein and its ability to bind viral RNA. NMR confirms predictions that the linker is not entirely unstructured and it is able to bind RNA. The linker region of the N protein with phosphoserine incorporated at S188 was also examined via an NMR titration experiment with 1-1000 RNA. Compared to wild type, the incorporation of phosphorylation decreases binding. Other biophysical techniques such as Analytical Ultracentrifugation (AUC) and Multi-Angle Light Scattering (MALS) are used to identify the association state of the linker and the size of the resulting protein-RNA complex. We are currently working to biophysically characterize the structure, dynamics, and viral RNA binding ability of a mutation found in the Delta and Omicron variants: the R203M linker, which have been shown to enhance viral infectivity. This work was supported by the NSF EAGER grant NSF/ MCB 2034446 and URSA Engage. Support to facilities includes the Oregon State University NMR Facility funded in part by NIH, HEI Grant 1S10OD018518, and by the M. J. Murdock Charitable Trust grant # 2014162.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

2.
Journal of Biological Chemistry ; 299(3 Supplement):S388, 2023.
Article in English | EMBASE | ID: covidwho-2315101

ABSTRACT

SARS-CoV-2 Spike harbors glycans which function as ligands for lectins. Therefore, it should be possible to exploit lectins to target SARS-CoV-2 and inhibit cellular entry by binding glycans on the Spike protein. Burkholderia oklahomensis agglutinin (BOA) is an antiviral lectin that interacts with viral glycoproteins via N-linked high mannose glycans. Here, we show that BOA binds to the Spike protein and is a potent inhibitor of SARS-CoV-2 viral entry at nanomolar concentrations. Using a variety of biophysical tools such as SEC chromatography, dynamics light scattering, fluorescence binding assays, and electron microscopy, we demonstrate that the interaction is avidity driven and that BOA crosslinks the Spike protein into soluble aggregates. Furthermore, using virus neutralization assays, we demonstrate that BOA effectively inhibits all tested variants of concern as well as SARS-CoV-1, establishing that glycan-targeting molecules have the potential to be pan-coronavirus inhibitors.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

3.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 28.
Article in English | MEDLINE | ID: covidwho-2309372

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the development of direct-acting antiviral drugs due to the coronavirus disease 2019 (COVID-19) pandemic. The main protease of SARS-CoV-2 is a crucial enzyme that breaks down polyproteins synthesized from the viral RNA, making it a validated target for the development of SARS-CoV-2 therapeutics. New chemical phenotypes are frequently discovered in natural goods. In the current study, we used a fluorogenic assay to test a variety of natural products for their ability to inhibit SARS-CoV-2 Mpro. Several compounds were discovered to inhibit Mpro at low micromolar concentrations. It was possible to crystallize robinetin together with SARS-CoV-2 Mpro, and the X-ray structure revealed covalent interaction with the protease's catalytic Cys145 site. Selected potent molecules also exhibited antiviral properties without cytotoxicity. Some of these powerful inhibitors might be utilized as lead compounds for future COVID-19 research.

4.
Lasers Med Sci ; 38(1): 107, 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2296771

ABSTRACT

Issues related to human coronavirus (SARS CoV-2) are a burning topic of research in present times. Due to its easily contagious nature, real experimentation under laboratory conditions requires a high level of biosafety. A powerful algorithm serves as a potential tool for the analysis of these particles. We attempted to simulate the light scattering from coronavirus (SARS CoV-2) model. Different images were modelled using a modified version of a Monte Carlo code. The results indicate that spikes on the viruses exhibit a significant scattering profile and that the presence of spikes during modelling contributes to the distinctiveness of the scattering profiles.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Computer Simulation , Monte Carlo Method , Algorithms
5.
Int J Pharm X ; 5: 100174, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2258117

ABSTRACT

The most prevalent conditions among ocular surgery and COVID-19 patients are fungal eye infections, which may cause inflammation and dry eye, and may cause ocular morbidity. Amphotericin-B eye drops are commonly used in the treatment of ocular fungal infections. Lactoferrin is an iron-binding glycoprotein with broad-spectrum antimicrobial activity and is used for the treatment of dry eye, conjunctivitis, and ocular inflammation. However, poor aqueous stability and excessive nasolacrimal duct draining impede these agens' efficiency. The aim of this study was to examine the effect of Amphotericin-B, as an antifungal against Candida albicans, Fusarium, and Aspergillus flavus, and Lactoferrin, as an anti-inflammatory and anti-dry eye, when co-loaded in triblock polymers PLGA-PEG-PEI nanoparticles embedded in P188-P407 ophthalmic thermosensitive gel. The nanoparticles were prepared by a double emulsion solvent evaporation method. The optimized formula showed particle size (177.0 ± 0.3 nm), poly-dispersity index (0.011 ± 0.01), zeta-potential (31.9 ± 0.3 mV), and entrapment% (90.9 ± 0.5) with improved ex-vivo pharmacokinetic parameters and ex-vivo trans-corneal penetrability, compared with drug solution. Confocal laser scanning revealed valuable penetration of fluoro-labeled nanoparticles. Irritation tests (Draize Test), Atomic force microscopy, cell culture and animal tests including histopathological analysis revealed superiority of the nanoparticles in reducing signs of inflammation and eradication of fungal infection in rabbits, without causing any damage to rabbit eyeballs. The nanoparticles exhibited favorable pharmacodynamic features with sustained release profile, and is neither cytotoxic nor irritating in-vitro or in-vivo. The developed formulation might provide a new and safe nanotechnology for treating eye problems, like inflammation and fungal infections.

6.
Eur J Pharm Biopharm ; 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2245731

ABSTRACT

During the SARS-CoV2 pandemic mRNA vaccines in the form of lipid nanoparticles (LNPs) containing the mRNA, have set the stage for a new area of vaccines. Analytical methods to quantify changes in size and structure of LNPs are crucial, as changes in these parameters could have implications for potency. We investigated the application of sedimentation velocity analytical ultracentrifugation (SV-AUC) as quantitative stability-indicating method to detect structural changes of mRNA-LNP vaccines upon relevant stress factors (freeze/thaw, heat and mechanical stress), in comparison to qualitative dynamic light scattering (DLS) analysis. DLS was capable to qualitatively determine size and homogeneity of mRNA-LNPs with sufficient precision. Stress factors, in particular freeze/thaw and mechanical stress, led to increased particle size and content of larger species in DLS and SV-AUC. Changes upon heat stress at 50 °C were only detected as increased flotation rates by SV-AUC. In addition, SV-AUC was able to observe changes in particle density, which cannot be detected by DLS. In conclusion, SV-AUC can be used as a highly valuable quantitative stability-indicating method for characterization of LNPs.

7.
J Pharm Biomed Anal ; 220: 115011, 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-1996386

ABSTRACT

Lipid nanoparticles (LNPs) have shown great success as drug delivery systems, especially for mRNA vaccines, as those developed during the Covid-19 pandemics. Lipid analysis is critical to monitor the formulation process and control the quality of LNPs. The present study is focused on the development and validation of a high-performance liquid chromatography - diode array detector -evaporative light scattering detector (HPLC-DAD/ELSD) based method for the simultaneous quantification of 7 lipids, illustrating the main components of LNPs: ionizable lipids, the neutral co-lipid cholesterol, phospholipids, hydrophilic polymer-lipids for colloidal stability (e.g., a PEGylated lipid). In particular, this study focuses on two innovative synthetic lipids: a switchable cationic lipid (CSL3) which has demonstrated in vitro and in vivo siRNA transfection abilities, and the palmitic acid-grafted-poly(ethyloxazoline)5000 (PolyEtOx), used as an alternative polymer to address allergic reactions attributed to PEGylated lipids. The HPLC separation was achieved on a Poroshell C18 column at 50 °C using a step gradient of a mobile phase composed of water/methanol mixtures with 0.1% (v/v) trifluoroacetic acid (TFA). This method was validated following ICH Q2(R1) & (R2) guidelines in terms of linearity (R² ≥ 0.997), precision (relative standard deviation on peak areas < 5% for intermediate repeatability), accuracy (recoveries between 92.9% and 108.5%), and sensitivity. Indeed, low detection and quantitation limits were determined (between 0.02 and 0.04 µg and between 0.04 and 0.10 µg, respectively). Due to its high selectivity, this method allowed the analysis of lipid degradation products produced through degradation studies in basic, acidic, and oxidative conditions. Moreover, the method was successfully applied to the analysis of several liposome formulations at two key steps of the development process. Consequently, the reported HPLC method offers fast, versatile, selective and quantitative analysis of lipids, essential for development optimization, chemical characterization, and stability testing of LNP formulations.


Subject(s)
COVID-19 , Nanoparticles , Cholesterol , Chromatography, High Pressure Liquid/methods , Humans , Liposomes , Methanol , Nanoparticles/chemistry , Palmitic Acid , Phospholipids , Polyethylene Glycols , Polymers , RNA, Small Interfering , Trifluoroacetic Acid , Water
8.
Polymers (Basel) ; 14(16)2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-1987927

ABSTRACT

The outbreak of the worrisome coronavirus disease in 2019 has caused great concern among the global public, especially regarding the need for personal protective equipment with applied antiviral agents to reduce the spread and transmission of the virus. Thus, in our research, chitosan-based bioactive polymers as potential antiviral agents were first evaluated as colloidal macromolecular solutions by elemental analysis and charge. Three different types of low and high molecular weight chitosan (LMW Ch, HMW Ch) and a LMW Ch derivative, i.e., quaternary chitosan (quart-LMW Ch), were used. To explore their antiviral activity for subsequent use in the form of coatings, the macromolecular Chs dispersions were incubated with the model virus phi6 (surrogate for SARS-CoV-2), and the success of virus inactivation was determined. Inactivation of phi6 with some chitosan-based compounds was very successful (>6 log), and the mechanisms behind this were explored. The changes in viral morphology after incubation were observed and the changes in infrared bands position were determined. In addition, dynamic and electrophoretic light scattering studies were performed to better understand the interaction between Chs and phi6. The results allowed us to better understand the antiviral mode of action of Chs agents as a function of their physicochemical properties.

9.
Radiotherapy and Oncology ; 170:S1298-S1300, 2022.
Article in English | EMBASE | ID: covidwho-1967483

ABSTRACT

Purpose or Objective Early assessment of neutron contamination in IMRT applications was based on delivery techniques [1,2]. Recently these delivery techniques have been optimized and made more efficient with respect to the number of MU required for a certain dose. In fact, the number of MU for many IMRT or VMAT treatments required for a certain fraction dose are now comparable to those required for 3D-conformal techniques. Furthermore, with the Covid-19 pandemic, a new hypofractionated breast treatment protocol was introduced in our department, based on the “Fast Forward” protocol [3,5]. The implementation of higher daily doses demands for stricter constraints. This study was initiated in order to determine a strategy in minimising the out-of-field dose in clinical practice taking into account the risks and benefits related to different treatment techniques and photon energies. Materials and Methods To simulate realistic clinical conditions, an anthropomorphic phantom was used with a right breast prosthesis. The phantom was scanned and appropriate structures (body, breast, lung and PTV) were delineated. Plans were created using Field in Field (FiF), IMRT and VMAT techniques with different energies. The mean dose of the PTV was normalised to the prescribed fraction dose (5.2Gy) in all treatment plans. Surface scanning was used to position the phantom for treatment. Different detectors types were used for measurements (see Table 1). The measurements were performed at 3 positions: one in the lung and two on the surface at 10 cm and 20 cm respectively from isocentre. Results Figures 1 and 2 illustrate the out-of-field dose measurements associated with a specific configuration of delivery technique and beam energy. Application of 15MV, for all delivery techniques combined, produced more neutrons compared to the other energies used in this study, the neutron contribution to the total contamination was up to 13% for 15 MV at 20 cm from isocentre. FiF neutron contribution were comparable to IMRT even if it required the least MU. In terms of photon scatter contribution, VMAT showed the highest doses. The neutron contamination for 10 MV and 10 MV FFF was similar. Considering a treatment fraction of 5.2 Gy delivered in 15MV IMRT mode, a neutron contamination of 5mGy was observed, which can be considered comparable to a CBCT acquisition for patient positioning [4]. Conclusion As IMRT provides better dose homogeneity and OAR sparing it can be preferred over FiF considering comparable contributions in out-of-field dose contamination. For some complex cases, such as irradiating regional lymph nodes for a breast treatment, VMAT can be considered, as the small increase in out-of-field dose might be balanced against an optimal target coverage / OAR sparing. As expected, some neutron contribution can be observed for the higher energies, however, the low levels of it to the total contamination dose as observed in this study might warrant their use in favour of improved target coverage and skin sparing. Appendix (Figure Presented)(Table Presented)

10.
1st International Conference on Technologies for Smart Green Connected Society 2021, ICTSGS 2021 ; 107:19031-19039, 2022.
Article in English | Scopus | ID: covidwho-1950350

ABSTRACT

Obesity is a metabolic condition that accounts for life-threatening disorders like cancer, cardiovascular diseases, and type-2 diabetes. There are several anti-obesity drugs currently available on the market, but many of them show poor bioavailability due to low water solubility. Several attempts have been made by researchers to improve the solubility of orally administered drugs, but many of them did not work properly. Herein, we introduced a block copolymer micelle consisting of poly (lactic acid)-co-poly (ethylene glycol) to improve the solubility of the anti-obesity drug "Fenofibrate”. The block copolymer was synthesized using the polycondensation method, while the micelle was formed when water was added dropwise to the copolymer. Finally, laser light scattering and DLS analysis were used to confirm the micelle formation. The size of the micelle increased from 158 nm to 249 nm after the fenofibrate drug loading inside the hydrophobic core. The polymer PLA-co-PEG can be used as a carrier for orally administered fenofibrate drugs in the future for better water solubility and efficiency. © The Electrochemical Society

11.
Biomedical Applications of Light Scattering XII 2022 ; 11974, 2022.
Article in English | Scopus | ID: covidwho-1891709

ABSTRACT

The COVID-19 pandemic has caused a marked disruption in the delivery of medical care, resulting in significant negative consequences for patients. Considering Covid-19 spreads primarily through expelled respiratory droplets, the ability to detect and measure droplets is critical to the development of clinical protective practices. However, most available methods are either unsuitable for the clinical setting, or cannot distinguish solid particles from liquid droplets. We developed a robust and portable optical instrument capable of measuring the size and quantity of droplets generated during medical procedures. Here we outline the system design and describe our preclinical measurements, which showed that surgical masks significantly reduce the number of expelled speech droplets. Copyright © 2022 SPIE.

12.
Integrated Optics: Devices, Materials, and Technologies XXVI 2022 ; 12004, 2022.
Article in English | Scopus | ID: covidwho-1891706

ABSTRACT

Interferometric scattering microscopy is a newly emerging alternative to fluorescence microscopy in biomedical research and diagnostic testing due to its ability to detect nano-objects such as individual proteins, extracellular vesicles, and virions individually through their intrinsic elastic light scattering. To improve the signal-to-noise ratio, we developed photonic resonator interferometric scattering microscopy (PRISM) in which a photonic crystal (PC) resonator is used as the sample substrate. The scattered light is amplified by the PC through resonant near-field enhancement, which then interferes with the <1% transmitted light to create intensity contrast. Importantly, the scattered photons assume the wavevectors defined by PC's photonic band structure, resulting in the ability to utilize a non-immersion objective without significant loss at illumination density as low as 25 W/cm2. We demonstrate virus and protein detection, including highly selective capture and counting of intact pseudotype SARS-CoV-2 from saliva with sensitivity equivalent to conventional nucleic acid tests. The results showcase the promise of nanophotonic surfaces in the development of resonance-enhanced interferometric microscopies, and as a single step, room temperature, and rapid viral detection technology. © 2022 SPIE.

13.
Photonics ; 9(4):238, 2022.
Article in English | ProQuest Central | ID: covidwho-1810086

ABSTRACT

This study aims to highlight the problems with implementing optical techniques (laser tweezers, diffuse light scattering and laser diffractometry) in clinical hemorheological practice. We provide the feasibility of these techniques to assess microrheological effects of various molecular mechanisms affecting RBC aggregation and deformability. In particular, we show that they allow assessment of changes in RBC aggregation in whole blood samples both on the level of single cells and on the level of large ensembles of cells. Application of these methods allows for studying the mechanisms of RBC aggregation because they are sensitive to changes in the medium which surrounds the RBC (i.e., blood plasma, serum or model solutions of blood plasma proteins) and to changes in the cellular properties of RBCs (i.e., effects on the cell membrane due to glycoprotein inhibition).

14.
Mater Today Chem ; 25: 100924, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1799775

ABSTRACT

Due to the unprecedented and ongoing nature of the coronavirus outbreak, the development of rapid immunoassays to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its highly contagious variants is an important and challenging task. Here, we report the development of polyclonal antibody-functionalized spherical gold nanoparticle biosensors as well as the influence of the nanoparticle sizes on the immunoassay response to detect the SARS-CoV-2 spike protein by dynamic light scattering. By monitoring the increment in the hydrodynamic diameter (ΔDH) by dynamic light scattering measurements in the antigen-antibody interaction, SARS-CoV-2 S-protein can be detected in only 5 min. The larger the nanoparticles, the larger ΔDH in the presence of spike protein. From adsorption isotherm, the calculated binding constant (K D ) was 83 nM and the estimated limit of detection was 13 ng/mL (30 pM). The biosensor was stable up to 90 days at 4 °C. Therefore, the biosensor developed in this work could be potentially applied as a fast and sensible immunoassay to detect SARS-CoV-2 infection in patient samples.

15.
National Technical Information Service; 2020.
Non-conventional in English | National Technical Information Service | ID: grc-753458

ABSTRACT

UV radiation can inactivate viruses such as SARS-CoV-2. However, designing effective UV germicidal ir- radiation (UVGI) systems can be difficult because the effects of dried respiratory droplets and other fomites on UV light intensities are poorly understood. Numerical modeling of UV intensities inside virus- containing particles on surfaces can increase understanding of these possible reductions in UV intensity. We model UV intensities within spherical approximations of virions randomly positioned within spherical particles. The model virions and dried particles have sizes and optical properties to approximate SARS- CoV-2 and dried particles formed from respiratory droplets, respectively. In 1-, 5- and 9-m diameter par- ticles on a surface, illuminated by 260-nm UV light from a direction perpendicular to the surface, 0 , 10 and 18 (respectively) of simulated virions are exposed to intensities less than 1/100 th of intensities in individually exposed virions (i.e., they are partially shielded). Even for 302-nm light (simulating sunlight), where absorption is small, 0 and 11 of virions in 1- and 9-m particles have exposures 1/100 th those of individually exposed virions. Shielding is small to negligible in sub-micron particles. Results show that shielding of virions in a particle can be reduced by illuminating a particle either from multiple widely separated incident directions, or by illuminating a particle rotating in air for a time sufficient to rotate through enough orientations. Because highly UV-reflective paints and surfaces can increase the angular ranges of illumination and the intensities within particles, they appear likely to be useful for reducing shielding of virions embedded within particles.

16.
Measurement Science and Technology ; 33(4):14, 2022.
Article in English | Web of Science | ID: covidwho-1656005

ABSTRACT

Dynamic light scattering (DLS) is widely used for analyzing biological polymers and colloids. Its application to nanoparticles in medicine is becoming increasingly important with the recent emergence of prominent lipid nanoparticle (LNP)-based products, such as the SARS-CoV-2 vaccines from Pfizer, Inc.-BioNTech (BNT162b2) and Moderna, Inc. (mRNA-1273). DLS plays an important role in the characterization and quality control of nanoparticle-based therapeutics and vaccines. However, most DLS instruments have a single detection angle theta, and the amplitude of the scattering vector, q, varies among them according to the relationship q = (4 pi n/lambda (0)) sin(theta/2), where lambda (0) is the laser wavelength. Results for identical, polydisperse samples among instruments of varying q yield different hydrodynamic diameters, because, as particles become larger they scatter less light at higher q, so that higher-q instruments will under-sample large particles in polydisperse populations, and report higher z-average diffusion coefficients, and hence smaller effective hydrodynamic diameters than lower-q instruments. As particle size reaches the Mie regime the scattering envelope manifests angular maxima and minima, and the monotonic decrease of average size versus q is lost. The discrepancy among instruments of different q is hence fundamental, and not merely technical. This work examines results for different q-value instruments, using mixtures of monodisperse latex sphere standards, for which experimental measurements agree well with computations, and also polydisperse solutions of physically-degraded LNPs, for which results follow expected trends. Mie effects on broad unimodal populations are also considered. There is no way to predict results between two instruments with different q for samples of unknown particle size distributions. Initial analysis of the polydispersity index among different instruments shows a technical difference due to method of autocorrelation analysis, in addition to the fundamental q-effect.

17.
Applied Sciences ; 12(2):720, 2022.
Article in English | ProQuest Central | ID: covidwho-1637221

ABSTRACT

Multi-layer graphene (2–10 layers), also called graphene nanoplatelets (GNPs), is a carbon-based nanomaterial (CBN) type with excellent properties desirable for many biomedical applications. Despite the promising advantages reported of GNPs, nanoscale materials may also present a potential hazard to humans. Therefore, in this study, the in vivo toxicity of these nanomaterials at a wide range of concentrations from 12.5 to 500 µg/mL was evaluated in the Caenorhabditis elegans model for 24 h (acute toxicity) and 72 h (chronic toxicity). Furthermore, their in vitro toxicity (from 0 to 10 µg/mL for 12 and 24 h), proliferative activity at 72 and 96 h, and their effect on the expression of thirteen genes in human keratinocytes HaCaT cells were studied. The physico-chemical and morphological aspects of the GNPs used in this study were analyzed by Raman scattering spectroscopy, electron microscopy, zeta potential as a function of pH, and particle size measurements by dynamic light scattering. The results of this study showed that GNPs showed in vivo non-toxic concentrations of 25 and 12.5 µg/mL for 24 h, and at 12.5 µg/mL for 72 h. Moreover, GNPs present time-dependent cytotoxicity (EC50 of 1.142 µg/mL and 0.760 µg/mL at 12 h and 24 h, respectively) and significant proliferative activity at the non-toxic concentrations of 0.005 and 0.01 μg/mL in the HaCaT cell line. The gene expression study showed that this multi-layer-graphene is capable of up-regulating six of the thirteen genes of human keratinocytes (SOD1, CAT, TGFB1, FN1, CDH1, and FBN), two more genes than other CBNs in their oxidized form such as multi-layer graphene oxide. Therefore, all these results reinforce the promising use of these CBNs in biomedical fields such as wound healing and skin tissue engineering.

18.
16th National Conference on Laser Technology and Optoelectronics ; 11907, 2021.
Article in English | Scopus | ID: covidwho-1599605

ABSTRACT

The level of fine particulate air pollution exposure is positively correlated with the death rate of individuals infected with COVID-19. Monitoring is the first step to prevent fine particulate pollution. The instrument based on light scattering method to detect particle concentration has unparalleled advantages over other instruments due to its rapidity, real-time and low cost. Traditional light scattering instruments are limited by the light absorption and particle properties of particles, and their ability to monitor some particles with strong light absorption is greatly reduced. Moreover, when the measured environment is greatly different from the calibration environment, the measurement results often have large errors. In this research, an instrument is designed to detect the forward scattering of light from small angles of particles. It can monitor the number concentration of particles in the environment in real time in four particle size ranges (PM1, PM2.5, PM4 and PM10) and convert it into the mass concentration of particles. By using the simulated atmospheric smoke box and the standard instrument to conduct a field comparison experiment, the reliability and stability of the measurement results are verified. © 2021 SPIE.

19.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1186: 123015, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1487818

ABSTRACT

The potential of lipid nanoparticles (LNPs) as nucleic acid delivery vehicles has been demonstrated in recent years, culminating in the emergency use approval of LNP-based mRNA SARS-CoV-2 vaccines in late 2020. The determination of RNA content relative to LNP size can be important to the understanding of efficacy and adverse effects. This work presents the first description of a facile and rapid analytical method for online, size-dependent RNA payload distribution measurement using data from multi-angle light scattering, ultraviolet and refractive index detectors following separation of the LNPs by size-exclusion chromatography. The analysis was validated by size-based fractionation of the LNPs with subsequent offline analysis of the fractions. Four LNPs formulated with different PEG-lipids and different lipid compositions were tested. Good agreement was observed between the online and offline size-based RNA distributions among all four LNPs, demonstrating the utility of the online method for LNP-encapsulated RNA in general, and suggesting a means for simplified biophysical quantitation of a dosing-related critical quality attribute.


Subject(s)
COVID-19 Vaccines/chemistry , Chromatography, Gel/methods , Drug Carriers/chemistry , Nanoparticles/chemistry , RNA, Messenger/chemistry , RNA, Viral/chemistry , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Vaccines/immunology , Drug Delivery Systems , Humans , Lipids/chemistry , Particle Size , RNA, Messenger/immunology , RNA, Viral/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/immunology
20.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1463704

ABSTRACT

The delivery of a dexamethasone formulation directly into the lung appears as an appropriate strategy to strengthen the systemic administration, reducing the dosage in the treatment of lung severe inflammations. For this purpose, a hyaluronic acid-dexamethasone formulation was developed, affording an inhalable reconstituted nanosuspension suitable to be aerosolized. The physico-chemical and biopharmaceutical properties of the formulation were tested: size, stability, loading of the spray-dried dry powder, reconstitution capability upon redispersion in aqueous media. Detailed structural insights on nanoparticles after reconstitution were obtained by light and X-ray scattering techniques. (1) The size of the nanoparticles, around 200 nm, is in the proper range for a possible engulfment by macrophages. (2) Their structure is of the core-shell type, hosting dexamethasone nanocrystals inside and carrying hyaluronic acid chains on the surface. This specific structure allows for nanosuspension stability and provides nanoparticles with muco-inert properties. (3) The nanosuspension can be efficiently aerosolized, allowing for a high drug fraction potentially reaching the deep lung. Thus, this formulation represents a promising tool for the lung administration via nebulization directly in the pipe of ventilators, to be used as such or as adjunct therapy for severe lung inflammation.


Subject(s)
Dexamethasone/chemistry , Hyaluronic Acid/chemistry , Nanoparticles/chemistry , Pneumonia/drug therapy , Administration, Inhalation , Aerosols , Dexamethasone/pharmacology , Humans , Hyaluronic Acid/pharmacology , Nanoparticles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL